High glucose activates the alternative ACE2/Ang-(1-7)/Mas and APN/Ang IV/IRAP RAS axes in pancreatic β-cells
نویسندگان
چکیده
The activation of the classical angiotensin (Ang)-converting enzyme (ACE)/Ang II/Ang II type 1 receptor (AT1R) axis of the renin-angiotensin system (RAS) has been associated with islet dysfunction and insulin resistance. Hyperglycaemia, hypertension and obesity, major components of metabolic syndrome, are all associated with increased systemic and tissue levels of Ang II. Whereas it is well established that Ang II, by binding to AT1R, impairs glucose-stimulated insulin secretion and insulin signaling, the contribution of alternative RAS axes to β-cell function remains to be fully elucidated. In this study, using the BRIN-BD11 rat insulinoma cell line, we i) examined the basal expression levels of components of classical and alternative RAS axes and ii) investigated the effects of normal (5.5 mM) and elevated (11, 15, 25 mM) glucose concentrations on their expression and/or enzymatic activity by means of reverse transcription quantitative PCR (RT-qPCR), immunoblot analysis and enzymatic activity assays. The results correlated with the insulin production and release. Essential components of all RAS axes were found to be expressed in the BRIN-BD11 cells. Components of the alternative RAS axes, ACE2, neutral endopeptidase 24.11, Mas receptor (Mas), aminopeptidases A (APA) and N (APN) and insulin-regulated aminopeptidase (IRAP) showed an increased expression/activity in response to high glucose. These alterations were paralleled by the glucose-dependent increase in insulin production and release. By contrast, components of the classical RAS axis, ACE, AT1R and Ang II type 2 receptor (AT2R), remained largely unaffected under these conditions. Glucose induced the activation of the alternative ACE2/Ang-(1-7)/Mas and APN/Ang IV/IRAP RAS axes simultaneously with the stimulation of insulin production/release. Our data suggest the existence of a functional link between the local RAS axis and pancreatic β-cell function; however, further studies are required to confirm this hypothesis.
منابع مشابه
The ACE2/Ang-(1-7)/Mas Axis Regulates the Development of Pancreatic Endocrine Cells in Mouse Embryos
Angiotensin-converting enzyme 2 (ACE2), its product Angiotensin-(1-7) [Ang-(1-7)], and Ang-(1-7) receptor Mas, have been shown to regulate organogenesis during embryonic development in various species. However, it is not known whether a local ACE2/Ang-(1-7)/Mas axis is present in the fetal pancreas. It is hypothesized that there is a local ACE2/Ang-(1-7)/Mas axis in the embryonic pancreas in mi...
متن کاملAntioxidant effect of angiotensin (1-7) in the protection of pancreatic β cell function
It is well known that the local renin-angiotensin system (RAS) is activated in the diabetic state, which results in an increase in the level of oxidative stress injury to pancreatic β cells. The angiotensin‑converting enzyme 2 (ACE2)/angiotensin (1‑7) [Ang (1‑7)]/Mas axis is a negative regulator of the classical renin‑angiotensin system. In order to investigate the antioxidant effect of Ang (1‑...
متن کاملThe effect of progressive aerobic continuous training on angiotensin-1, angiotensin-2 and angiotensin-converting enzyme type 2 in patients with heart failure
Background: Chronic hypertension causes structural and functional changes in the heart, ultimately leading to heart failure (HF), which further increases mortality and morbidit. HF is a complex clinical syndrome caused by various structural or functional abnormalities of the heart that impair the filling capacity of the ventricles. The findings of various trials have shown the association betwe...
متن کاملEnzymatic processing of angiotensin peptides by human glomerular endothelial cells.
The intraglomerular renin-angiotensin system (RAS) is linked to the pathogenesis of progressive glomerular diseases. Glomerular podocytes and mesangial cells play distinct roles in the metabolism of angiotensin (ANG) peptides. However, our understanding of the RAS enzymatic capacity of glomerular endothelial cells (GEnCs) remains incomplete. We explored the mechanisms of endogenous cleavage of ...
متن کاملAngiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis activates Akt signaling to ameliorate hepatic steatosis
The classical axis of renin-angiotensin system (RAS), angiotensin (Ang)-converting enzyme (ACE)/Ang II/AT1, contributes to the development of non-alcoholic fatty liver disease (NAFLD). However, the role of bypass axis of RAS (Angiotensin-converting enzyme 2 (ACE2)/Ang-(1-7)/Mas) in hepatic steatosis is still unclear. Here we showed that deletion of ACE2 aggravates liver steatosis, which is corr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 32 شماره
صفحات -
تاریخ انتشار 2013